Reliable In-Memory Code Identification Using Relocatable Pointers

Irfan Ahmed, Vassil Roussev, Aisha Ali Gombe

Department of Computer Science University of New Orleans

Contents

- Code fingerprinting
- Problem Statement
- Codeid proposed approach
 - Challenges ASLR, paging, and page alignment
- Evaluation
 - Prevalence
 - Coverage
 - Collision
 - Accuracy
- Conclusion

Why Code Fingerprinting?

- Used by several proactive security monitoring, and reactive forensic analysis applications
 - Most incident response and deep forensics techniques requires exact code version being executed on target system
 - Fingerprinting of Malware is at the core of antivirus applications
- In Infrastructure-as-a-service (laaS), code fingerprinting is a critical tool that enables a large number of automated services
 - Patch management
 - Security services such as code integrity checking

Code Identification

- Network fingerprinting tools
 - such as *nmap* and *xprobe2*
 - Remotely identify kernel versions based on the packets being exchanged
 - inherently unreliable
- Disk filesystem
 - such as virt-inspector using libguestfs
 - Limited access to non-volatile media such as encrypted disk in the cloud
- Hardware
 - CPU register states containing pointers to low-level data structures such as IDT and GDT to identify kernel versions
 - Does not work on many MS Windows kernels ^[1]

[1] Y. Gu, et al., Os-sommelier: Memory-only operating system fingerprinting in the cloud, Third ACM Symposium on Cloud Computing, SoCC '12, pages 5:1-5:13, New York, NY, USA, 2012. ACM.

Code Identification

- Physical memory
 - Use cryptographic hash of interrupt handler code as unique a unique feature to identify kernel versions
 - Data structure definitions vary across OS version, which are used for kernel version identification
 - OS-Sommelier
 - Search entire memory dump and identifies the page global table
 - Find kernel page in virtual address space in memory
 - Generate the signature of the kernel, which is cryptographic hash values of kernel pages
 - Same step is performed on target image to identify the kernel version

Problem Statement

 Given a physical memory dump, how we can identify the presence of a known piece of code in the dump, which is running at an arbitrary location

• Goals:

- Accurate precise results even for closely related code
- **Robust** least dependence on in-memory data structures
- Performance fast enough to be of practical use of scanning live VMs
- Fully Automated requires no human in the loop

A simple approach

- Divide the executable file into memory size pages
- Compute hash of each page
- Compute the hash of in-memory pages
- and, compare them with the hash values of executable file pages
- Works on Position Independent Code that does not change when loaded into the memory

Does not work on relocatable code

Relocatable code

Code in Men	nory	7			I	n-M	emo	ry B	ase A	ddre	ess:	0xF	8 <i>CC</i>	200	0		
00000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000010	8b	ff	55	8b	ec	68	E0	24	CC	F8	e8	39	00	00	00	83	Uh.\$9
000000201	c4	04	5d	c2	04	00	СС	СС	CC	CC	CC	СС	СС	CC	CC	CC]
000000301	8b	ff	55	8b	ес	8b	45	08	с7	40	34	90	24	СС	F8	68	UE@4.\$h
00000040									00								.%3.].
00000050	08	00	СС	СС	СС	СС	СС	СС	ff	25	84	25	CC	F8	СС	СС	•••••••••••••••••••••••••••••••••••••••
000000601	44	72	69	76	65	72	20	75	6e	6c	6f	61	64	69	6e	67	Driver unloading
000000701	0a	00	CC	CC	СС	СС	CC	CC	CC	CC	СС	CC	CC	СС	СС	СС	
000000801	48	65	6c	6c	6f	2c	20	57	6f	72	6c	64	0a	00			Hello, World

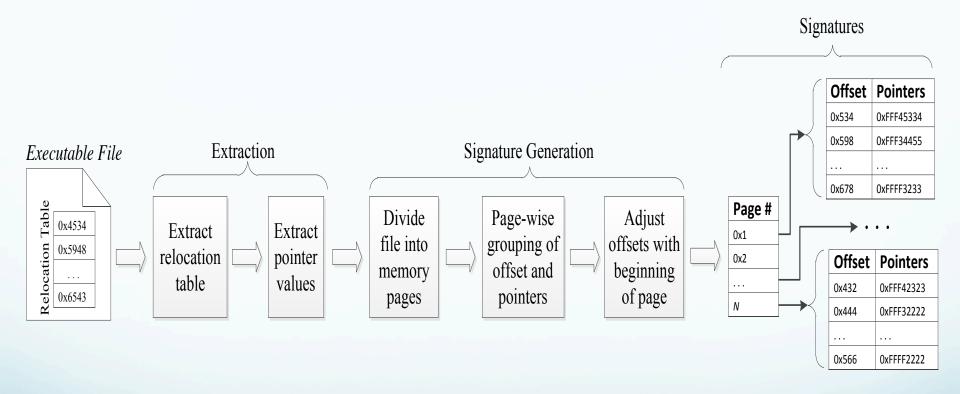
Code in File

Pre-determined Base Address: 0x00010000

000000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000010	8b	ff	55	8b	ес	68	E0	04	01	00	e8	39	00	00	00	83	Uh9
000000201	c4	04	5d	c2	04	00	CC	CC	СС	CC	CC	CC	CC	CC	CC	CC]
000000301	8b	ff	55	8b	ес	8b	45	8 0	c7	40	34	90	04	01	00	68	UE@4h
00000040	00	05	01	00	e8	0f	00	00	00	83	c4	04	33	с0	5d	c2	
00000050	08	00	CC	CC	CC	CC	CC	CC	ff	25	84	05	01	00	СС	СС	••••••
000000601	44	72	69	76	65	72	20	75	6e	6c	6f	61	64	69	6e	67	Driver unloading
000000701	0a	00	CC	CC	СС	CC	СС	СС	СС	CC	СС	CC	CC	CC	CC	CC	
000000801	48	65	6c	6c	6f	2c	20	57	6f	72	6c	64	0a	00			Hello, World

Focus of the work

- How to efficiently identify relocatable code
- Consider only 32-bit Windows executables for experiments


Proposed Approach – codeid

Index	Ν																	
J	Pointer Lo	cation																
	T	Code in File				P	're-d	eter	minec	d Ba	se A	ddre	ess: (0x00	010	000		
		000000001	00 00	0 O O	00	00	00	00	00	00	00	00	00	00	00	00	00	
		00000010	8b fi	ē 55	8b	ес	68	EO	04	01	00	e8	39	00	00	00	83	Uh9
	0x16	000000201	c4 04	1 5d	c2	04	00	СС	СС	CC	CC	CC	CC	СС	CC	CC	СС]
	0×10 0 x 3 B	000000301	8b f:	ē 55	8b	ес	8b	45	08	c7	40	34	90	04	01	00	68	UE@4h
	$\frac{0\times30}{0\times40}$	000000401	00 0	5 O1	00	e8	0f	00	00	00	83	c4	04	33	с0	5d	с2	
	0x5A	000000501	08 00) cc	СС	CC	CC	СС	СС	ff	25	84	05	01	00	СС	СС	•••••
	ocation	000000601	44 72	2 69	76	65	72	20	75	6e	6c	6f	61	64	69	6e	67	Driver unloading
		000000701	0a 00) cc	СС	CC	CC	СС	СС	CC	СС	СС	СС	СС	СС	СС	СС	
1	able	000000801	48 65	5 6C	6c	6f	2c	20	57	6f	72	6c	64	0a	00			Hello, World

page signature ← offsets in relocation table & pointers

Observation (from our study): Location and pointer values naturally provide unique signatures for the pages of an executable files 1

Proposed Approach – codeid

ASLR & pointer values

		Code in Me	mory	In-M	lemory Ba	se Address: 0xF8CC2000	Pointer – Base Address = Offset
Relo	cation	00000000	00 00 00	00 00 00	00 00	00 00 00 00 00 00 00 00	
Т	able	00000010	8b ff 55	8b ec 68	E0 24	CC F8 e8 39 00 00 00 83U	0xF8CC24E0 – 0xF8CC2000 = 4E0
1 (0x16	000000201	c4 04 5c	l c2 04 00	CC CC] • • • • • • • • • • • • • •
	Dx3B	000000301	8b ff 55	8b ec 8b	45 08		JE@4.\$h <i>0xF8CC2490 – 0xF8CC2000 = 490</i>
)x40	000000401	00 25 CC	F8 e8 Of	00 00		
-	Dx5A	00000050	08 00 cc	cc cc cc	CC CC	ff 25 84 25 CC F8 cc cc	$ \otimes . \otimes $ 0xF8CC2584 – 0xF8CC2000 = 584
		000000601	44 72 69	76 65 72	20 75	6e 6c 6f 61 64 69 6e 67 Dri	iver unloading
		000000701	0a 00 cc	cc cc cc	CC CC	cc cc cc cc cc cc cc	
Index	N	000000801	48 65 6c	: 6c 6f 2c	20 57	6f 72 6c 64 0a 00 Hel	llo, World
	Pointer Lo	cation Code in File	•	Pre-	determined	d Base Address: 0x00010000	Pointer – Base Address = Offset
		00000000	00 00 00	00 00 00	00 00	00 00 00 00 00 00 00	
		000000101	8b ff 55	8b ec 68	E0 04	01 00 e8 39 00 00 00 83	Uh
)x16	000000201	c4 04 5d	c2 04 00	cc cc	cc cc cc cc cc cc cc]	
	Dx3B	00000301	8b ff 55	8b ec 8b	45 08	c7 40 34 90 04 01 00 68	UE@4h 0x00010490 – 0x00010000 = 490
)x40	000000401	00 05 01	00 e8 Of	00 00	00 83 c4 04 33 c0 5d c2	$\dots \dots $
		000000501	00 00			ff 25 84 05 01 00 cc cc	
		10000000000	08 00 cc	cc cc cc	CC CC		$\dots \dots $
)x5A	000000601	44 72 69				% 0x00010584 - 0x00010000 = 584
Relo	ox5A cation able			76 65 72	20 75	6e 6c 6f 61 64 69 6e 67 Dri	0,00010304 0,00010000 - 304

 $\forall 0 \le i < n, \alpha(i) - \beta(i) = \alpha(i+1) - \beta(i+1)$

12

on-disk vs in-memory pointer values

Pointer	In-memory	In-file	Difference
location	pointer (α)	pointer (β)	
0x16	0xF8CC24E0	0x000104E0	0xF8CB2000
0x3B	0xF8CC2490	0x00010490	0xF8CB2000
0x40	0xF8CC2500	0x00010500	0xF8CB2000
0x5A	0xF8CC2584	0x00010584	0xF8CB2000

Base in-memory address (B_m) computation: $B_m = \alpha(i) - \beta(i) + B_f$, for any $i : 0 \le i < n$.

Paging Considerations

- Not all pages of an executable (kernels/ applications/libraries) are present in main memory
 - About 75% of MS Windows kernels are pageable
 - Application executables are completely pageable
- *majority-wins* approach is used, which in practice eliminates much of the paging-related noise
- Use all pages of executable that are *read-only* and *not discardable*

Correct page alignment

- Alignment between in-file and in-memory pages for the executable
- Enough information is present in the headers of an executable for correct alignment

Test dataset

- Everything hinges on the signatures from relocation tables being *unique*
- Test sets
 - 1. Kernels
 - 2. System executables (system32)
 - 3. Applications
 - 4. Malware

Dataset	#1	#2	#3	#4	Total
Files	20	$17,\!010$	26	34,014	51,070

Analysis of the Data

- **Prevalence**: how many relocations per page can we expect to find?
- **Coverage**: what fraction of the pages in the executable contain relocations?
- **Collision**: What are the collision rates of signatures across different executables

• Accuracy:

- *Page Level*: What are the false positive (FP) and false negative (FN) rates for page signatures?
- *File Level*: Can we just use relocatable code to identify code version?

prevalence & coverage: kernels

Version	Prevalance (P_1)	Coverage (C_1) $(\%)$
2000 Server	66.26	85.90
XP SP1	59.97	88.02
XP SP2	60.12	88.50
XP SP3	56.26	88.08
Vista SP0	56.25	84.61
Vista SP1	55.25	85.99
Vista SP2	55.31	85.79
Win 7 SP0	54.28	86.04
Win 7 SP1	54.05	86.14
Win 8	51.64	91.89
Win 8.1	51.64	91.89

prevalence & coverage: system

Version	Files	P_2	C_2
2000 Server	811	99.77	73.51
XP SP1	923	98.91	72.90
XP SP2	928	94.98	74.39
XP SP3	1,023	95.01	74.25
Vista SP0	1,623	99.66	70.96
Vista SP1	1,641	99.58	70.99
Vista SP2	$1,\!657$	99.98	70.60
Win 7 SP0	1,787	101.05	70.63
Win 7 SP1	1,987	101.95	70.21
Win 8	2,259	116.73	71.68
Win 8.1	2,371	116.36	72.43
Weighted Avg		104.12	71.72

prevalence & coverage: applications

Application	P_3	C_3					
Adobe Reader 9.4	75.67	7.41	1	Firefox 23	127.33	4.69	1
10.1.4	75.66	72.05		24	78.00	3.17	
11.0.03	79.92	90.60		25	78.00	3.17	
AVG 2012	119.48	93.37		27	79.00	3.17	
2013	106.87	94.18		28	79.00	3.17	
2014	107.04	94.08		IExplorer 7	109.57	9.27	1
Chrome 33.0.1750.146	58.96	66.16		8	142.6	6.21	
33.0.1750.154	58.98	65.83		9	98.33	3.35	
34.0.1857.116	57.91	68.56		10	89.50	2.20	
$\mathbf{cmd} \ 6$	96.12	70.21		Media Player 11	88.00	5.13	1
$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	$93.88 \\ 107.91$	$\begin{array}{c} 90.95\\ 83.33 \end{array}$		· 12	108.00	5.13	
0.2	107.91	00.00		WinRAR 3.91	108.60	77.22	
				4.2	105.48	77.65	
				5.01	99.10	78.45	

prevalence & coverage: malware

Category	Files	P_4	C_4
Backdoor	8,654	372.00	71.57
Constructor	106	316.08	66.95
Exploit	140	258.00	66.51
Flooder	136	220.59	72.84
Packed	43	343.00	60.65
Rootkit	562	258.00	60.62
Trojan	22,744	464.60	71.78
Virus	398	310.67	71.88
Worm	1,231	340.00	74.29
Weighted Avg		428.87	71.59

21

(page) signature overlap: kernels

Version	0%	20%	40%	60%	80%	99%	100%
Win2000 WinXP WinVista Win7 Win8	$ \begin{array}{r} 100 \\ 100 \\ 25.30 \\ 65.91 \\ 100 \end{array} $	72.18 33.88	1.89 0.21	0.16	0.21	0.26	

- 20 kernel files
 - 11,472 signatures and
 - 641,636 Offset-Relocation (O-R) pairs
- All signatures are unique
 - No two pages completely overlap

(page) signature overlap: system

Version	0%	20%	40%	60%	80%	99%	100%
Win2000	76.66	22.80	0.47	0.04	0.01	0.02	
WinXP1	78.40	21.20	0.36	0.02		0.01	0.00
WinXP2	86.27	13.59	0.13		0.00	0.01	0.00
WinXP3	94.50	4.67	0.31	0.19	0.14	0.16	0.03
WinVista	99.93	0.06	0.01	0.00			
Win7	99.81	0.17	0.01				0.01
Win8	99.83	0.17	0.00				0.00

- 17,000 system files
 - 667,299 signatures
 - 67,031,628 O-R pairs
 - Similar results from Kernels
- Decreasing overlap from older to newer versions
 - No definite answer
 - One possibility is that newer compiler optimization leads to less stable O-R configurations in response to minor code changes

(page) signature overlap: applications

Application	0%	20%	40%	60%	80%	99%	100%
AVG 2012	12.68	61.97	21.75	3.50	0.11		
2013	13.77	69.96	12.15	4.01		0.11	
2014	100						
Chrome							
33.0.1750.146	38.93	61.07					
34.0.1857.116	36.84	63.16					
IExplorer 7	42.86	50.00	7.014				
8	100						
9	100						
10	50.00	50.00					

- 8 popular applications 26 total versions
 - 5 out of 8 contain only non-overlapping signatures
 - Adobe Reader, cmd, Firefox, Media Player, and WinRAR
 - Five Firefox versions cover a release period of only eight months (Aug 2013 April 2014)
- The overlap of the remaining three applications stays almost completely in lowest quantile

(page) signature overlap: malware

Category	0%	20%	40%	60%	80%	99%	100%
Backdoor	61.02	10.47	00.48	00.17	00.16	00.54	27.16
Constructor	98.75	01.20	00.01	00.03		00.01	
Exploit	88.42	11.29	00.24		00.02	00.02	
Flooder	96.29	02.77	00.10	00.12	00.20	00.39	00.14
Packed	92.11	07.89					
Rootkit	95.14	03.12	00.07		00.09	00.56	01.01
Trojan	79.80	10.48	00.72	00.34	00.32	00.63	07.70
Virus	95.17	04.64	00.02		00.01	00.02	00.13
Worm	99.45	00.24	00.04	00.07	00.10	00.07	00.03

- 9 malware types
 - 34,014 malware samples
 - 976,754 page signatures
 - 124,239,916 pairs
 - Almost all signatures are distinct
- Exceptions: *Backdoor*, and *Trojan*

(page) signature overlap: malware

- Backdoor set contains 964 closely related version of Backdoor.Win32.Hupigon
 - sdhash similarity score is 95 out of 100
- Trojan set contains 718 near-identical versions of Trojan-Downloader.Win32.Banload
 - Contributing 4.4% of the samples in collision

Page- and File-level accuracy

- Coverage, Provenance, and Overlap are measured on the signatures created from executable files
- Accuracy is measured on memory dumps
- Measuring ground truth
 - LibVMI an alternate way to find pages in memory dump
 - Unlike codeid, libVMI finds and interprets the data structures such as LDR_DATA_TABLE_ENTRY, PEB_LDR_DATA, EPROCESS, and PEB.
 - It identifies the virtual base address and size of kernel and other executables including DLLs, EXEs, and SYS.
 - Pages identified by LibVMI are the target for codeid

Page- and File-level accuracy

• In some cases, page contains only 0x00 or 0xFF.

- It satisfies the equation for signature matching
- Trivially filter out with precisely zero entropy
- Filtering improves false positives
- Pages with very low (but not zero) entropy triggers false positives
- Overall codeid has zero false negative rate, and false positive rate of around 0.0021
 - Page-level accuracy is 99.79%

page-level accuracy: kernel & modules

Version	Pages	FPR	FNR	Accuracy
XP1	1,517	0.0000	0.0000	1.0000
XP2	2,001	0.0020	0.0000	0.9980
XP3	1,922	0.0000	0.0000	1.0000
Vista0	3,267	0.0083	0.0000	0.9917
Vista1	3,342	0.0009	0.0000	0.9991
Vista2	$3,\!454$	0.0026	0.0000	0.9974
Win7	3,790	0.0000	0.0000	1.0000
Win7.1	3,717	0.0016	0.0000	0.9984
Win8	$5,\!193$	0.0029	0.0000	0.9871
Win8.1	5,336	0.0002	0.0000	0.9998
Overall	33,539	0.0019	0.0000	0.9981

TP: Identify correct page, belong to correct process*FP*: Wrong page or page belongs to wrong process*TN*: No match and memory image does not contain target binary*FN*: No match and memory image contains target binary

page-level accuracy: processes and .dlls

Version	Pages	FPR	FNR	Accuracy
XP1	4,992	0.0048	0.0000	0.9952
XP2	$5,\!962$	0.0002	0.0000	0.9998
XP3	$5,\!359$	0.0011	0.0000	0.9989
Vista0	$14,\!298$	0.0034	0.0000	0.9966
Vista1	$15,\!117$	0.0064	0.0000	0.9936
Vista2	$15,\!382$	0.0000	0.0000	1.0000
Win7	$16,\!232$	0.0025	0.0000	0.9975
Win7.1	$17,\!426$	0.0007	0.0000	0.9993
Win8	$26,\!128$	0.0010	0.0000	0.9990
Win8.1	$28,\!452$	0.0039	0.0000	0.9961
Overall	149,348	0.0024	0.0000	0.9976

TP: Identify correct page, belong to correct process*FP*: Wrong page or page belongs to wrong process*TN*: No match and memory image does not contain target binary*FN*: No match and memory image contains target binary

File-level accuracy: kernel modules

	WinXP		Vista		Win7		W	in8	GT	TPR		
	60	10	5								61	.9836
WinXP	9	79	19								82	.9634
	5	20	74								74	.9600
				95	7						95	1.000
Vista				21	75	45					97	.7732
				15	19	95					95	1.000
Win7							102	57			102	1.000
VV 1117							58	103			103	1.000
Win8									110		110	1.000
VV 1110										109	109	1.000

- 182 different modules (by names)
 - across 10 MS Windows versions
- Blank cells indicate zero in confusion matrix
 - GT represents ground-truth
 - Total number of binaries present in memory image 31

File-level accuracy: kernel modules

- Paging affects the accuracy
 - 2.2% (or 737 out of 33,539) of pages are not loaded in 10 images
 - Vista-SP1 image alone had 434 pages (out of 3,342) missing
 - 13% of pages are missing
 - It is probably the result of the snapshot taken too soon after boot
- VMware drivers are found in all cases

File-level accuracy: Firefox 23 – 29

Version	23	24	25	26	27	28	29	GT
Firefox 23	3							3
24		2						2
25			2	2				2
26			2	2				2
27					2	1		2
28					1	2	1	2
29						1	2	2

- Applications tend to have *no* page signature collisions
- Challenging case: 7 consecutive versions of Firefox, individual release comes every 6 weeks
 - Coverage of around 3.5%
 - All pages are correctly identified
 - Only two neighboring versions are tied

Signature Comparison— Baseline algorithm

Algorithm 2 Baseline Algorithm

 $M \leftarrow$ Number of pages in memory $N \leftarrow$ Number of executable files $S_N \leftarrow$ Number of page signatures of an executable count = 0for i = 1 to |M| do for j = 1 to |F| do for k = 1 to $|S_N|$ do if signature_match($P_i, S_{j,k}$) then $count_j + +$ return count

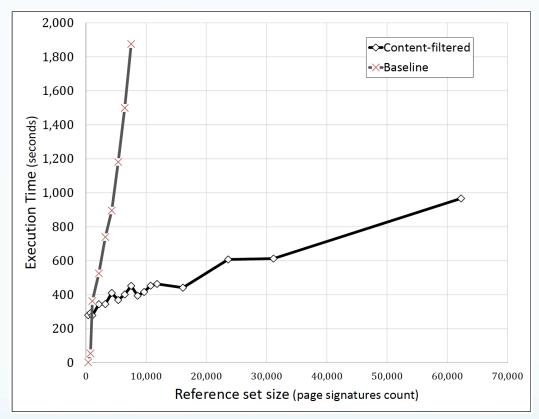
Basis of content-filtered algorithm

		Code in Me	mory	In-Memory	Base Address: 0xF8CC2000	Pointer – Base Address = Offset
Re	location	00000000	00 00 00	00 00 00 00 0	00 00 00 00 00 00 00 00	
,	Fable	00000010	8b ff 55	8b ec 68 EO 2	CC F8 e8 39 00 00 00 83	Uh.\$9 <i>0xF8CC24E0 – 0xF8CC2000 = 4E0</i>
	0x16	000000201	c4 04 5d	c2 04 00 cc c]
2	0x3B	00000301	0.0 11 00	8b ec 8b 45 0	3 c7 40 34 90 24 CC F8 68	UE@4.\$h 0xF8CC2490 - 0xF8CC2000 = 490
3	0x40	000000401	00 25 CC	F8 e8 Of OO O		.%3.]. 0xF8CC2500 – 0xF8CC2000 = 500
4	0x5A	000000501	08 00 cc	cc cc cc cc c	c ff 25 84 25 CC F8 cc cc	•••••••••••••••••••••••••••••••••••••
L É		000000601	44 72 69	76 65 72 20 7	5 6e 6c 6f 61 64 69 6e 67	Driver unloading
		00000070	0a 00 cc	cc cc cc cc c	c cc cc cc cc cc cc cc	
Inde	K N	000000801	48 65 6c	6c 6f 2c 20 5	7 6f 72 6c 64 0a 00	Hello, World
	Pointer L	location				
	Î	Code in File	e	Pre-determi	ned Base Address: 0x00010000	Pointer – Base Address = Offset
	Î	Code in File		<i>Pre-determi</i>		Pointer – Base Address = Offset
			00 00 00		0 00 00 00 00 00 00 00 00	
1	0×16	000000000	00 00 00 8b ff 55	00 00 00 00 0	0 00 00 00 00 00 00 00 00 00 4 01 00 e8 39 00 00 00 83	
1	0x16	000000000000000000000000000000000000000	00 00 00 8b ff 55	00 00 00 00 0 8b ec 68 E0 0 c2 04 00 cc c	00 00 00 00 00 00 00 00 4 01 00 e8 39 00 00 00 83 c cc cc cc cc cc cc cc cc	
2	0x3B	00000000 00000010 00000020	00 00 00 8b ff 55 c4 04 5d 8b ff 55	00 00 00 00 0 8b ec 68 E0 0 c2 04 00 cc c	0 00 00 00 00 00 00 00 00 4 01 00 e8 39 00 00 00 83 c cc cc cc cc cc cc cc cc 8 c7 40 34 90 04 01 00 68	
2 3	0x3B 0x40	00000000 00000010 00000020 00000030	00 00 00 8b ff 55 c4 04 5d 8b ff 55 00 05 01	00 00 00 00 00 0 8b ec 68 EO 0 c2 04 00 cc c 8b ec 8b 45 0	0 00 00 00 00 00 00 00 00 4 01 00 e8 39 00 00 00 83 c cc cc cc cc cc cc cc cc 8 c7 40 34 90 04 01 00 68 0 08 c4 04 33 c0 5d c2	
2 3 4	0x3B 0x40 0x5A	00000000 00000010 00000020 00000030 00000040 00000050 00000060	00 00 00 8b ff 55 c4 04 5d 8b ff 55 00 05 01 08 00 cc	00 00 00 00 00 8b ec 68 EO C c2 04 00 cc c 8b ec 8b 45 0 OO e8 0f 00 0	0 00 00 00 00 00 00 00 00 4 01 00 e8 39 00 00 00 83 c cc cc cc cc cc cc cc cc cc 8 c7 40 34 90 04 01 00 68 0 083 c4 04 33 c0 5d c2 c ff 25 84 05 01 00 cc cc	
2 3 4 Re	0x3B 0x40	00000000 00000010 00000020 00000030 00000040 00000050 00000060	00 00 00 8b ff 55 c4 04 5d 8b ff 55 00 05 01 08 00 cc 44 72 69	00 00 00 00 00 0 8b ec 68 E0 0 c2 04 00 cc c 8b ec 8b 45 0 00 e8 0f 00 0 cc cc cc cc c	0 00 00 00 00 00 00 00 00 00 4 01 00 e8 39 00 00 00 83 c cc cc cc cc cc cc cc cc 3 c7 40 34 90 04 01 00 68 0 083 c4 04 33 c0 5d c2 c ff 25 84 05 01 00 cc cc 6 6 6 6 61 64 69 6e 67	

Last 12 bits of a pointer are consistent across file and memory $key = S_i[j].offset \mid (uint32(S_i[j].ptr) \& 0x0FFF)$

Signature Comparison-Content-filtered algorithm

Algorithm 4 Creating a filter table.


filter = new hashtable()for i = 1 to |RS| do for j = 1 to $|S_i|$ do $key = S_i[j].offset \mid (uint32(S_i[j].ptr) \& 0x0FFF)$ value = filter.lookup(key)if value == nil then value = new**set**() $value = value \cup S_i$ *filter.put*(*key*, *value*)

Algorithm 5 Signature matching

for i = 1 to |M| do for j = 1 to |P| - 4 do $key = j \mid (uint32(P_i) \& 0x0FFF)$ candidates = filter.lookup(key)for S in candidates do if signature_match(P_i, S) then $result = result \cup S$ return result

Throughput

- PoC implementation ran on 2.6GHz Intel Core i7 CPU using a 2GB target
 - 33,554,432 memory pages to scan
- Cross-over point of algorithms is around 1000 signatures
- Further improvement: filtering out of memory pages based on content or location, sampling of signatures, and concurrent processing

Comparison with prior work

Windows Version	OS-Som	nmelier	code	eid
WINDOWS VEISION	VMware	QEMU	VMware	QEMU
Win Server 2000	\checkmark	\checkmark	\checkmark	\checkmark
Win XP SP1	×	×	\checkmark	\checkmark
Win XP SP2	\checkmark	\times	\checkmark	\checkmark
Win XP SP3	\checkmark	\checkmark	\checkmark	\checkmark
Win Vista SP0	\checkmark	\checkmark	\checkmark	\checkmark
Win Vista SP1	\checkmark	\checkmark	\checkmark	\checkmark
Win Vista SP2	×	×	\checkmark	\checkmark
Win 7 SP0	\checkmark	\checkmark	\checkmark	\checkmark
Win 7 SP1	×	×	\checkmark	\checkmark
Win 8	×	Х	\checkmark	\checkmark
Win 8.1	×	×	\checkmark	\checkmark

- OS-Sommelier— best representation of prior state of the art
 - Better accuracy than the approaches based on CPU registers and IDT content
- It is inherently fragile and has high sensitivity to the hypervisor
 - Dependence on specific byte patterns to identify data structures

Conclusion

- Fully automated signature generation
- Page-level accuracy of 99.79%
- Zero false negative rate
 - ensures that, if the target code is in memory, it will be found
- Perfect kernel detection (windows)
- Kernel module mapping: 97/93/100/100% for xp/vista/7 & 8
- Firefox detection success in the worst case
- Scalable performance
- Main limiting factor in codeid is the unpredictability of paging system
 - not a notable impediment under normal workload

